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ABSTRACT

Low-Density Parity-Check (LDPC) codes are considered among the best error-correcting 
codes in use today. These codes can be defined by a sparse parity-check matrix H, which has 
a graphical representation as a Tanner graph. Several studies have shown that the existence 
of 4-cycles in the Tanner graph affects the performance of LDPC codes. In this paper, we 
propose a method which allows the construction of 4-cycle-free parity-check matrices. The 
main principles behind the proposed method are as follows: First, we choose a vector V 
which consists of wc ones and L-wc zeros, in such a way that the chosen vector allows us to 
construct a circulant matrix H1 without 4-cycles. Second, we pass this matrix to the proposed 
algorithm to obtain a set of L-vectors. When any vector taken from this set is appended 

as a news column in the matrix H1, we 
obtain an L×(L+1) matrix without 4-cycles. 
Next, we select those vectors that lead to 
a circulant matrix H2 without 4-cycles. 
Finally, we can obtain an L×2L matrix H 
without 4-cycles by concatenating matrices 
H1 and H2.Simulation results confirm that 
the structure of the matrices constructed 
by the proposed method significantly 
reduces the encoding complexity. Though 
the performance of these matrices at higher 
signal-to-noise-ratios (SNRs) is not as 
good as those constructed by MacKay’s 
method, they can be applied to practical 
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communications because of being encoded in linear time with shift registers.

Keywords: 4-cycle-free matrices, circulant matrices, LDPC codes, Tanner graph

 
INTRODUCTION

In the early sixties Gallager (1962) proposed a new class of block codes called low-density 
parity-check (LDPC) codes. Since then, these codes have been included in a variety of 
different standards including WiMAX (IEEE 802.16e), WiFi (IEEE 802.11n) and 10 Gb/s 
Ethernet (802.3an). An LDPC code is characterized by its sparse parity-check matrix H, 
which consists of zeros and ones with less ones than zeros. After the rediscovery of LDPC 
codes by MacKay and Neal (1995) in the mid-nineties, they quickly became very famous 
as they demonstrated an excellent performance (MacKay, 1999). The parity-check matrix 
H has a graphical representation known as the Tanner graph (Tanner, 1981). This graph is 
a bipartite one consisting of two kinds of nodes: bit (variable) nodes that correspond to the 
columns of H and check nodes that correspond to its rows. A bit node is connected to a check 
node by an edge if the value of the intersection of the column and the row corresponding 
to these nodes is equal to 1. A cycle in a bipartite graph is a set of edges that forms a 
continuous path starting with a node and returning to the same node without going through 
an edge more than once. The number of these edges is called the length of the cycle, and the 
smallest length is the girth of the code. The Tanner graph contains neither cycles of length 
2 nor cycles of odd length. Therefore, the girth of this graph is at least 4. The number of 
cycles in the Tanner graph is one of the parameters that affect the performance of LDPC 
codes, particularly short cycles (Wiberg, 1996), and more precisely the cycles of length 4 
(Li et al., 2017; MacKay, 1999). In the belief propagation algorithm (BPA), the presence of 
cycles in a Tanner graph causes a loss of independence in the messages sent by the nodes of 
the graph (Bandi et al., 2011).Various methods for constructing LDPC codes without short 
cycles have been proposed, such as constructions based on array dispersion and masking 
(Xu et al., 2016), based on difference sets (Esmaeili & Javedankherad, 2012) and based 
on sub-matrix shifting (Fan & Xiao, 2006a). The structure of the matrices constructed by 
these methods increases the encoding complexity.

To solve this problem, we propose a method to construct 4-cycle-free parity-check 
matrices, for regular LDPC codes, with low encoding complexity. These matrices having 
wr ones in each row and wc ones in each column where wr=2wc. In this work, only the 
values of wc, which are equal to 2, 3, 4 and 5, are taken into account.
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MATERIALS AND METHODS

Regular LDPC Codes

An LDPC code is characterized by its parity-check matrix H. This code is called regular if 
its parity-check matrix contains a fixed number wr of ones in each row and a fixed number 
wc of ones in each column (Johnson, 2010, p. 38). The matrix H represents the parity-check 
matrix of a regular LDPC code.

𝐻 =

0 0 0 1 1 1 0 1 0 0
1 0 0 0 1 0 1 0 1 0
1 1 0 0 0 0 0 1 0 1
0 1 1 0 0 1 0 0 1 0
0 0 1 1 0 0 1 0 0 1

The Tanner graph for the parity-check matrix H is shown in the Figure 1, where the 
dotted lines represent a 6-cycle.Since there are no smaller cycles in this graph; its girth is 6.

Circulant Matrices

A circulant matrix is a square matrix where each row is obtained by shifting the previous 
row one position to the right (Aldrovandi, 2001, p. 83), i.e,

Figure 1. Tanner graph of the matrix H.

In this paper, the values of hi belong to the set {0,1}.

Construction of 4-Cycle-Free Matrices

The steps of the proposed method are as follows:
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First step. In this step, we calculate all permutations Pall of the vector V=[h0 h1h2…hL-1], 
which consists of wc ones and L-wc zeros, using the following law (Bóna, 2007, p.19):

𝑃𝑎𝑙𝑙 =  𝐿!
𝑤𝑐! 𝐿− 𝑤𝑐 !

                                                                                                                            [1]

Using one of the cycle counting methods proposed by Fan and Xiao (2006b), Karimi 
and Banihashemi (2013), Li et al. (2015) or the permutations of the vector V which allow 
the construction of 4-cycle-free circulant matrices are found. We collect these permutations 
in a set S.

Based on simulation results, the length L is given by:
L ≥2wc (wc- 1)+ 1                                                                                                                 [2]
For wc equal to 2, 3 and 5, while for wc equal to 4, L is given by:

L >2wc (wc- 1)+ 1                                                                                                                  [3]
Second step. In this step, we took at each time a vector from the set S and constructed 
a circulant matrix that passed to the proposed algorithm detailed later on in the 
Proposed Algorithm section. The result of the algorithm is a set of all possible vectors 
𝑉𝑖′ = ℎ0′ ℎ1′ ℎ2′ … ℎ𝐿−1′  that allow us to use the matrix passed to the algorithm to construct 
an L×(L+1) matrix without 4-cycles as shown in the following matrix:

In general, not all vectors resulting from the algorithm allow the construction of 
circulant matrices without 4-cycles. For this reason, we chose only those that possessed 
the required characteristic of being able to construct matrices without 4-cycles. These 
vectors form a new set S’.
Third step. From the previous step, we noticed that each circulant matrix constructed by a 
vector of the set S had its own set S’ which was found by using the proposed algorithm. In 
this last step, by concatenating each of these matrices with each circulant matrix, constructed 
by a vector of the set S’, we got matrices of the form:
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The matrix H is an L×2L matrix without 4-cycles, which contains wc ones in each 
column and 2wc ones in each row.

𝑆 = 0000𝟏𝟏, 000𝟏0𝟏, 000𝟏𝟏0, 00𝟏0𝟏0, 00𝟏𝟏00, 0𝟏000𝟏, 0𝟏0𝟏00, 0𝟏𝟏000,𝟏0000𝟏 , 
𝟏000𝟏0,𝟏0𝟏000, 𝟏𝟏0000 .

Example 1. Let V be a vector of length L=6, which consists of 4 zeros and 2 ones.

Step 1. The number of permutations of V is Pall=15, only 12 permutations in the set S 
allow us to construct 4-cycle-free circulant matrices.

Step 2. We select a vector from the set S and construct a circulant matrix. This matrix 
is passed to the proposed algorithm. We find that each matrix passed to this algorithm has 
a set S’ consisting of six vectors. For example; the circulant matrix constructed by the 
vector [100001] has the set:

S’={101000,100010,010100,010001,001010,000101}.

Step 3. For instance, we chose the vector [100001] with its own set S’ (shown in the 
step 2) and we constructed the following 4-cycle-free circulant matrices:

To construct such matrices, it was enough to choose at each time a vector from the 
set S.Then, we passed the circulant matrix associated with this vector to the proposed 
algorithm so as to get a set of vectors S’. Matrices without 4-cycles would be constructed 
by concatenating the matrix passed to the proposed algorithm with each of the circulant 
matrices associated with the vectors of the set S’.

What about Large Matrices?

To construct large matrices, we simply added a number of zeros to the vectors obtained in 
first and second step in the Construction of 4-Cycle-Free Matrices section, in such a way 
that this number must be greater than or equal to L-1. These zeros had to be added, either 
on one side or on both sides of each vector as shown in the following example:

Example 2. The matrix H2 of the example 1 consists of two circulant sub-matrices, 
the first sub-matrix is constructed by the vector [100001] while the second is constructed 
by the vector [100010]. To increase the size of H2 without losing its characteristic (without 
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4-cycles), it is sufficient to add a number of zeros greater than or equal to 5 (because L=6) to 
each vector, either on one side or on both sides. To construct a 20×40 matrix, for example, 
we add to each vector 14 zeros. Then, the first vector becomes: [00000010000100000000] 
and the second becomes: [00000000001000100000]. The matrix H2 will be as follows:

𝐻 =
 1 0 0 1
 1 1 0 0
 0 1 1 0
 0 0 1 1

,  𝐼 =  
 1 2
 2 3
 3 4
 1 4

The Proposed Algorithm

Here are some notations associated with the proposed algorithm: 
I: a matrix which contains the indices of ones of the matrices H that will be passed to 

the proposed algorithm. Each row of I represents the indices of ones in each column of H. 
The following example shows the form of the matrixI:

For the first column of H, the indices of ones are ‘1’ and ‘2’ so we will fill the first row 
of I by 1 and 2 and so on until the last row of I.

L: the length of the vector used to construct the circulant matrix H.
V’: defined in second step in the Construction of 4-Cycle-Free Matrices section.
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RESULTS AND DISCUSSION

Results of the Proposed Method

In this section, we present the results of the proposed method. First, we calculated all 
permutations Pall of a vector V of length L.Then, we chose among these permutations only 
those that allowed the construction of matrices without 4-cycles (Pfree). Finally, a number of 
4-cycle-free matrices H(L×2L) was found according to the length L. These operations would 
be repeated for wc equal to 2, 3, 4 and 5.

Table 1 shows the number of matrices H(L×2L) according to the length L, for wc equal to 
2. From the results in this table we note that the number of 4-cycle-free matrices increases 
proportionally to the length L. When L is odd, all permutations of V allow constructing 
matrices without 4-cycles, unlike if L is even. Tables 2, 3 and 4 show the number of matrices 
H(L×2L) for wc equal to 3, 4 and 5, respectively, and for some values of L. The results in 
these tables show that the number of 4-cycle-free matrices varies according to the value 
of L, but not on a regular basis.
Table 1
Number of 4-cycle-free matrices for wc=2
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Table2
Number of 4-cycle-free matrices for wc=3

Table3
Number of 4-cycle-free matrices for wc=4

Table4
Number of 4-cycle-free matrices for wc=5
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Encoding Complexity Comparison

In this subsection, we compared encoding complexity of the proposed method with the 
methods proposed by Esmaeili and Javedankherad (2012); Fan and Xiao (2006a); MacKay 
(2005) and Xu et al.(2016). For that we used the encoding method proposed by Dutta and 
Pramanik (2015) to calculate the number of permutations needed to permute the parity-
check matrix into the approximate UPPER triangular format (AUT). These permutations 
would be saved in a vector in order to apply the inverse permutation to each code word 
before it was transmitted. It is important to note that the encoding complexity increases as 
the number of permutations increases.

The 4-cycle-free parity-check matrices used in this comparison are as follows:

For the proposed method:

For the method proposed by MacKay (2005):
1. 204.55.187(Size:102×204);
2. 816.3.174(Size:408×816);
3. 4000.2000.3.243 (Size:2000×4000);
4. 8000.4000.4.484 (Size:4000×8000).

For the method proposed by Xu et al. (2016):
By using the exponent matrix and masking matrix below, we constructed the following 

matrices by changing the identity matrix sizes:
1. Size of the identity matrix:330(Size of the resultant matrix:1320×2640);
2. Size of the identity matrix:500(Size of the resultant matrix: 2000×4000);
3. Size of the identity matrix:1000(Size of the resultant matrix: 4000×8000);
4. Size of the identity matrix:2000(Size of the resultant matrix:8000×16000).
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Table6
Comparison between the proposed and the second method

Table7
Comparison between the proposed and the third method





































==

11010111
01101111
10111101
11111010

;

87288144962124920169
1688231628423416613446
249206158142117836723
00000000

MP

For the method proposed by Esmaeili and Javedankherad (2012):
1. Difference set:(31,6,1),F32 : (Size of the resultant matrix:124×248);
2. Difference set:(31,6,1),F64 : (Size of the resultant matrix:189×378);
3. Difference set:(133,12,1),F256 : (Size of the resultant matrix:765×1530);
4. Difference set:(133,12,1),F256 : (Size of the resultant matrix:1020×2040);

For the method proposed by Fan and Xiao (2006a):
1. v=6,p=4 : (Size of the resultant matrix:432×864);
2. v=6,p=10 : (Size of the resultant matrix:1080×2160);
3. v=6,p=40 : (Size of the resultant matrix:4320×8640);
4. v=6,p=80 : (Size of the resultant matrix:8640×17280);

Table5
Comparison between the proposed and the first method
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Tables 5, 6, 7 and 8 show some 4-cycle free parity-check matrices, constructed by the 
proposed method and the four methods mentioned above, and their corresponding number 
of permutations required to bring these matrices into the approximate upper triangular 
format. From the results shown in these tables, we can observe that the proposed method 
offered a gain of 16 permutations in the 102×204 matrix as a minimum gain, and 8470 as a 
maximum in the 8640×17280 matrix. For the 765×1530 matrix constructed by the proposed 
method, the number of permutations was zero, which meant that the associated encoder 
did not need to apply the inverse permutation to each code word before the transmission.

The proposed method gives the smallest number of permutations among the other 
methods for all matrices; this would imply that it offers the lowest encoding complexity. 
Furthermore, it provides more flexibility to construct matrices of different sizes than the 
other methods. 

Performance of the Proposed Method

In this subsection we compared the performance, in terms of the bit error rate (BER), of 
two LDPC codes with parity-check matrices constructed by the proposed method and 
two LDPC codes with parity check-matrices constructed by MacKay’s method (MacKay, 
2005).The matrices constructed by MacKay are as follows:

1. 96.33.966 (wc=3,wr=6, size:48×96).
2. 96.44.443 (wc=4,wr=8, size:48×96).
Each of the matrices, constructed by the proposed method, is a concatenation of two 

matrices H1 and H2, where H1 and H2 are the circulant matrices constructed by the vectors 
V1 and V2 respectively. The matrices used in the simulation are defined by:

1. V1 (1,7,12)=V2 (1,10,13)=1 (wc=3,wr=6, size:48×96).
2. V1 (17,23,25,26)=V2 (1,5,12,17)=1 (wc=4,wr=8, size:48×96).
The encoding process can be realized using one of the methods proposed by Dutta and 

Pramanik (2015) or Richardson and Urbanke (2001). The encoded bits were modulated 
using binary phase shift keying (BPSK) before being sent over the additive white Gaussian 
noise (AWGN) channel. We used the sum-product algorithm (Johnson, 2010) for the 
decoding with a maximum of 10 iterations.

Figure 2 provides a performance comparison between the proposed method and 
MacKay’s method for wc=3 and 4. According to this figure, the proposed method slightly 

Table8
Comparison between the proposed and the fourth method
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Figure 2. Performance comparison of the proposed method and that of MacKay

outperforms MacKay’s method at lower SNRs, while at higher SNRs, MacKay’s method 
performs better than the proposed method.

CONCLUSION

In this paper, we propose an original method capable of constructing 4-cycle-free parity-
check matrices that can be used with regular LDPC codes. These matrices have full rank for 
odd-column-weight (3 and 5) and just one redundant row for even-column-weight (2 and 
4). Simulation results show that the proposed method offers both an enormous reduction 
in encoding complexity and a very large number of 4-cycle-free parity-check matrices of 
different sizes. Although MacKay’s method outperforms, in terms of BER, the proposed 
method in the high SNR region, the matrices constructed by the proposed method can be 
adopted in many practical applications due to their hardware implementation using simple 
shift registers.
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